Space-adjusting Technologies
and the Social Ecologies of Place

Donald G. Janelle
University of California, Santa Barbara

Reflections on Geographic Information Science
Session in Honor of Michael Goodchild

Annual Meeting of the Association of American Geographers
New York
27 February 2012
<table>
<thead>
<tr>
<th>Space-adjusting technologies</th>
<th>Human Extensibility</th>
<th>Social Ecologies of Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation</td>
<td></td>
<td>Diversity</td>
</tr>
<tr>
<td>Communication</td>
<td></td>
<td>Integration</td>
</tr>
<tr>
<td>Paths & networks (telegraph, land-based telephone,</td>
<td></td>
<td>Interaction</td>
</tr>
<tr>
<td>cable, email)</td>
<td></td>
<td>Density</td>
</tr>
<tr>
<td>Spatially-extensive (print media, radio, television)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Online transaction (e-commerce, social networks)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobile/ smart phone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location-based services (LBS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surveillance & tracking (digital cameras, GPS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volunteered Geographic Information (VGI)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Paths & networks (telegraph, land-based telephone, cable, email)
- Spatially-extensive (print media, radio, television)
- Online transaction (e-commerce, social networks)
- Mobile/smart phone
- Location-based services (LBS)
- Surveillance & tracking (digital cameras, GPS)
- Volunteered Geographic Information (VGI)

<table>
<thead>
<tr>
<th>Human Extensibility</th>
<th>Social Ecologies of Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projecting self & building networks across space</td>
<td>Density</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td>Integration</td>
</tr>
<tr>
<td>Influence beyond one's location of physical presence</td>
<td>Interaction</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Relaxation of distance dependency in transactions and</td>
<td></td>
</tr>
<tr>
<td>associations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>LBS</td>
<td></td>
</tr>
<tr>
<td>Drawing others to a location or accessing information</td>
<td></td>
</tr>
<tr>
<td>about nearby locations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Building location awareness within communities and along</td>
<td></td>
</tr>
<tr>
<td>paths</td>
<td></td>
</tr>
</tbody>
</table>
Social Ecologies of Place
Toward an application of GIScience

• **Social Ecologies** – diversity, integration, interaction, & density of humans and their activities

• **Transitions to space-time social ecology:**
 - G Engel-Frisch, Temporal Aspects of Human Ecology 1948
 - Amos Hawley, Human Ecology 1950
 - Donald Foley, Urban Daytime Populations 1954
 - RC Schmitt, Estimating Daytime Populations 1956
 - F Stuart Chapin, Population Densities Around the Clock 1963
 - E Shevky and W Bell, Social Area Analysis 1955
 - R Murdie, Factorial Ecology of Metropolitan Toronto 1969
 - D Parkes & N Thrift, Factorial-ecology in space and time 1975
Paths to Space-time Ecological Analysis / Modeling

1800s Population Census

Early 1900s Time & activity diaries / Social ecology

1940s – 1950s Daytime population / Social area analysis

1960s – 1970s Census factorial ecology

1960s Time geography

1970s Space-time diaries / Space-time ecology

1980s GIS / Spatial demographics

1990s GPS / GIS / Time geography

2000s Space-time diaries / GPS / GIS

Time geography / Space-time ecologies

Web 2.0 / Volunteered geographic information (VGI)

2010s BIG DATA / Cyberinfrastructure
Time Geography of a Canadian City Project
(Goodchild & Janelle)

• Space-time survey, Halifax Canada 1971-72, A. Harvey
 – 2100 one-day diaries spread over the week
 – 99 activity types
 – Space-time resolution 1-min in time and 100m in space

• Link space-time social ecology with time geography
 – Trace paths through space
 – Reconstruct “census-like” data by time of day
 – Factorial ecology from activity data instead of census data
 (who is where when? What are they doing and with whom?)
 – 3-mode factor solution (activities, space, & time)
Location Quotients
Unmarried by time of day

Space-time measures by subpopulation:
• densities
• segregation

space-time paths:
• activity times, spaces, durations, sequences, fragmentation
• trip speeds
• activity dispersal, range

Janelle & Goodchild, 1983
Space-time Ecology of Human Activity

Halifax

Janelle, Klinkenberg & Goodchild, 1997
Social ecological zones by time-of-day from dominant activities & locations of 2,100 respondents

Halifax-Dartmouth NS

Janelle, Klinkenberg & Goodchild, 1997
The City of London: 11,700 permanent residents but daytime population is 390,000

City of London daytime density: 350,000 people per square mile!

Westminster: 250,000 permanent residents but daytime population nearly 1 million

Most daytime overseas visitors: Westminster (65,000)
http://undertheraedar.blogspot.com/2011_10_01_archive.html

Alasdair Rae, Lecturer, Town & Regional Planning
University of Sheffield
• ORNL’s LandScan USA integrates satellite imagery with census data in GIS
• Budhendra Bhaduri: uses a dasymetric population distribution model for simulation to 90m grid cells
This is New York City’s population by day...

Traffic rank: 16th worst (46 hr./yr.)
Average daily commute: 34 min.

...and the population at night

Issues in space-time population mapping

• Needs social grounding of human space-time behavior
• Night-time / day-time is too coarse for applications and theory testing
• Human mobility and ICT are central to understanding human social connections in space-time
• ICT have facilitated (H. Couclelis):
 – Disconnections between activities and places/times
 – Fragmentation of activities and events
 – Decreasing reliability of models for capturing the complexities of human interactions
• Discontinuities in space-time paths need elaboration
ICT-induced Discontinuities in Space-time Paths

• Individuals as *agents* can:
 – do more than one thing at a time
 – occupy more than one place at a time (virtually)
 – occupy more than one time at a place (virtually)
 – interact with others independently of their presence

• Individuals as *mobile objects* can be:
 – traced continuously in space-time
 – intercepted in-route
 – redirected along new space-time trajectories
 – archived into long-term surveillance databases

• Individuals as members of *networks* can:
 – be independent of place or dependent on place
 – coalesce into ad hoc groups to meet temporary objectives
 – be stable even though locations of members change
Big Data to the Rescue?

• **synoptic** approaches for analyzing processes of both short / long-term duration over geographical space
 – modeling & visualization to render results on demand
 • e.g., the weather map; hourly, daily, and seasonally adjusted forecasts
 • who is where, when, and what are the activities?

• **distributed ICT sensors** for continuous space-time

• **pattern-recognition** to infer activities from tracking data and known characteristics of places (e.g., land use, opening hours)

• **integrated data archives** for aggregation at any spatial scale or time period
Challenges to Dynamic Urban Social Ecology

- Demonstrating worthwhile applications
- Add theoretical understanding to process rules for modeling
- Testing hypotheses in a dynamic world
- Designing data, analysis, & display systems that recognize individual rights to shield one’s identity
- Honor rights to privacy, including locational privacy
- Avoiding intrusive and unsafe demands on respondents
- Sustainability:
 - Harvesting transportation activity surveys (decadal resolution)
 - Tweaking the American Community Survey and American Time-use Survey to capture space-time paths for annual comparisons
 - LandScan USA – from day/night to hourly simulation
 - Automating continuous space-time activity profiles from VGI
Conclusions

• Tools are at hand to integrate space-time concepts with realities of dynamic behavior
• Opportunities to portray ever-emergent social geographies and ecologies
• Dynamic social ecologies can for refined theory and modeling for applied uses
• Entering new territory that will test the ethical bounds of space-time analyses in geography, GIScience, and the social sciences

Thank you, dgj